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Abstract. We compute electroweak form factors of the nucleon and photon transition form factors of non-
strange baryon resonances up to the third resonance region in a model with instanton-induced interaction.
The calculation is based on the Bethe-Salpeter equation for three light constituent quarks and is fully
relativistic (U. Löring et al., Eur. Phys. J. A 10, 309 (2001)). Static nucleon properties and photon
resonance couplings are in good agreement with experiment and the Q2 behaviour of the experimentally
known form factors up to large momentum transfer is accounted for.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 12.39.Ki Relativistic quark model
– 13.40.Gp Electromagnetic form factors

1 Introduction

The notion of constituent quarks has proven to be the
most successful concept for the interpretation of hadron
resonances. We know, however, that they can, at best, be
quasi-particles which arise due to a dynamical breakdown
of chiral symmetry in fundamental QCD. The details of
this process are still obscure; we believe, therefore, that it
is of general interest to work out precisely at which ener-
gies this concept tends to fail. As a first step it is therefore
necessary to construct a constituent quark model, which
fits the mass spetrum quantitatively, and to extend this
model in energy and momentum transfer as much as pos-
sible. For this reason the following issues are the most
essential for our approach:

1. The model has to be relativistical covariant. This is ob-
viously not the case in non-relativistic quark models,
which dominated the research of the last decades [1].
The need for covariance was clearly recognised in the
past, and led to various relativizations (e.g. [2,3]).
They include in particular the use of formally rela-
tivistic energies and a prescription for boosting non-
relativistic wave functions. The importance of this last
point was recently demonstrated again by the Graz
group [4]. In contrast to this, we have directly used in
our attempts the Bethe-Salpeter equation with instan-
taneous forces, which respects covariance right from
the beginning. This model was used for light quark
flavours with considerable success concerning the spec-
trum of mesons [5] and baryons [6–8]. With only 7
model parameters (masses and couplings) an efficient
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and good description of the experimentally known
baryon spectrum could be achieved describing both
Regge trajectories and the fine structure in the mass
splittings.

2. Usual non-relativistic quark interactions (string-like
confinement and one-gluon exchange fine-structure in-
teraction) have proven to lead to inconsistent spectro-
scopic results, e.g. too large spin-orbit couplings. In
addition, the known nucleon Regge trajectory is not
correctly explained. In our model we keep the string-
like confinement and solve the spin-orbit problem by
an appropriate Dirac structure. We also replace the
one-gluon exchange by ’t Hooft’s instanton-induced in-
teraction [9,10]. This has the advantage that the UA(1)
anomaly of the meson spectrum is correctly treated
and that the η′ problem is convincingly solved from
the very beginning. In addition, the ’t Hooft’s force is
very similar in structure to the dynamics of a Nambu-
Jona-Lasinio model and offers a natural mechanism for
chiral symmetry breaking (see [11,12]).

The model we have constructed, however, not only
describes the hadron mass spectrum; the basic Bethe-
Salpeter amplitudes we computed can be used to derive
form factors and couplings of various sorts [13]. Such a
calculation has already been published for mesonic states
alone [5]. In this paper we show now a more or less com-
plete calculation of electroweak nucleon form factors and
resonance transition form factors as far as experimen-
tal data are available. We limit ourselves to non-strange
baryons; baryons with strangeness will be considered in
another publication.

The present paper is organized as follows:
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a) In the first section we outline the theoretical derivation
of our form factors. For more details of the model it-
self we refer to our previous publications [6–8]. Here we
only describe the way how current matrix elements fol-
low from the Bethe-Salpeter equation. Particular em-
phasis is put on the treatment of the quark two-body
interaction and its role in the three-body vertex func-
tion (see also appendix A).

b) In sect. 2 we show our results for the nucleonic elec-
troweak form factors in comparison to the experiment.
Several theoretical aspects are discussed in addition, in
particular, the special effects of the quark interaction
and the relevance of relativistic boosting.

c) In sect. 3 we present our predictions for transition form
factors. We compare with various experimental data,
which are, however, not as well established as it is the
case for the nucleon properties, because the extrac-
tion of these form factors from pion photoproduction
is highly model dependent. Less ambiguous are the
photon couplings (helicity amplitudes), for which we
have indeed results, which show good overall agree-
ment with the known data. The detailed behaviour of
these form factors as a function of Q2 shows, however,
sometimes large discrepancies with the functional be-
haviour extracted so far from experiments. Our results
can in this respect be regarded as alternative predic-
tions waiting for experimental verification.

At the end of this introduction we want to stress that the
calculation presented in this paper contains no free param-
eters or normalization. All model parameters were fixed in
the previous calculation of the baryon mass spectrum [7].
(We use the set of modelA from this reference which quan-
titatively describes several features of the complete light
flavour baryon spectrum.) We even did not try to bring
our form factor results into closer agreement to some ex-
perimental values, when the disagreement was only due to
slight deviations of our model resonance masses from the
known experimental values, in order to be entirely con-
sistent with our final goal to see how far the constituent
quark picture of hadron resonances works in phenomenol-
ogy at higher energies.

2 Current matrix elements derived from the
Bethe-Salpeter amplitudes

2.1 Bethe-Salpeter amplitudes

In our first paper [6] we presented a formally covariant
constituent quark model of baryons which is based on the
3-quark Bethe-Salpeter amplitudes

χP̄ a1a2a3
(x1, x2, x3) := 〈0| T Ψa1(x1)Ψa2(x2)Ψa3(x3) |P̄ 〉.

(1)

In quantum field theory these are the transition ma-
trix elements of three-quark field operators Ψai

(xi) be-
tween a baryon state |P̄ 〉 with mass M =

√
P̄ 2 and four-

momentum P̄ = (ωP,P) = (
√|P|2 +M2,P) and the vac-

uum |0〉. The Fourier transform χP̄ (pξ, pη) (here pξ and

and pη are the two relative Jacobi four-momenta) formally
obeys the Bethe-Salpeter equation which in a shorthand
operator notation reads

χP̄ = −i G0P̄

(
K

(3)

P̄
+K

(2)

P̄

)
χP̄ . (2)

Here G0P denotes the three-fold tensor product

G0P (pξ, pη; p′ξ, p
′
η) =

S1
F

(
1
3P+pξ+ 1

2pη

) ⊗ S2
F

(
1
3P−pξ+ 1

2pη

) ⊗ S3
F

(
1
3P−pη

)
×(2π)4 δ(4)(pξ − p′ξ) (2π)

4 δ(4)(pη − p′η) (3)

of full quark propagators Si
F , K

(3)
P is the irreducible three-

body interaction kernel and K
(2)

P the sum

K
(2)

P (pξ, pη; p′ξ, p
′
η) =

K
(2)

( 2
3 P+pη)

(pξ, p
′
ξ)⊗ S3

F
−1 (

1
3P − pη

)
(2π)4 δ(4)(pη − p′η)

+ corresponding terms with interacting
quark pairs (23) and (31) (4)

of the irreducible two-particle interactions K(2) in each
quark pair.

To be as close as possible in contact with the quite
successful non-relativistic quark model, the basic assump-
tions of this model are the following:

1. The full quark propagators Si
F are replaced by free

Feynman propagators with effective constituent quark
masses mi:

Si
F (pi)

!=
i

	pi −mi + iε
. (5)

2. We adopt instantaneous three- and two-body interac-
tion kernels K(3) and K(2) which in the rest frame of
the baryon are described by the unretarded three- and
two-body potentials V (3) and V (2):

K
(3)
P (pξ, pη; p′ξ, p

′
η)

∣∣∣∣
P=(M,0)

!= V (3)(pξ,pη; p′
ξ,p

′
η),

(6)

K
(2)

( 2
3 P+pη)

(pξ, p
′
ξ)

∣∣∣∣
P=(M,0)

!= V (2)(pξ,p′
ξ).

In our specific quark model of baryons [7,8] these
potentials represent the string-like confinement for
the three-particle kernel and the ’t Hooft’s instanton-
induced interaction for the two-particle kernel.

These assumptions allow to eliminate the energy-like co-
ordinates p0

ξ and p0
η and thus to reduce the 3-fermion

Bethe-Salpeter equation to a simpler equation —known
as Salpeter equation. In case of instantaneous three-body
forces alone this reduction procedure is straightforward.
However, as discussed in detail in ref. [6], serious compli-
cations arise within the reduction procedure, if genuine
2-body interactions are taken into account in the three-
body Bethe-Salpeter equation: the unconnected two-body
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contribution K
(2)

P within the three-body system then pre-
vents a straightforward reduction to the Salpeter equation.
In ref. [6] we presented a method which —in presence of
a genuine instantaneous three-body kernel— nevertheless
allows a reasonable treatment of these forces within the
Salpeter framework. There, we derived a Salpeter equa-
tion for the (projected) Salpeter amplitude (for a brief
review see also appendix A)

ΦΛ
M (pξ,pη) :=

(
Λ+++(pξ,pη) + Λ−−−(pξ,pη)

)
×

∫ dp0
ξ

2π
dp0

η

2π
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
, (7)

where Λ+++(pξ,pη) := Λ+
1 (p1) ⊗ Λ+

2 (p2) ⊗ Λ+
3 (p3) and

Λ−−−(pξ,pη) := Λ−
1 (p1) ⊗ Λ−

2 (p2) ⊗ Λ−
3 (p3) are pro-

jection operators onto purely positive-energy and purely
negative-energy three-quark states, respectively. This is
achieved by a perturbative elimination of retardation ef-
fects which arise due to the two-body interaction. To this
end we constructed an instantaneous three-body kernel
V eff

M which effectively parameterizes the effects of the two-
body forces. We expanded this quasi-potential in powers
of a residual kernel KR

M = K
(2)

M + V
(3)
R which is the sum

of the retarded two-body contribution K
(2)

M and that part
V

(3)
R of the instantaneous three-body kernel V (3) that cou-

ples to the mixed energy components. In the lowest order
(Born approximation) V eff

M ≈ V eff
M

(1) of this perturbative
expansion one finds

V eff
M

(1)
(pξ,pη; p′

ξ,p
′
η) =

(2π)3 δ(3)(pη−p′
η) γ0 ⊗ γ0 ⊗ γ0

×
[
Λ+++(pξ,pη)

[
γ0⊗γ0 V (2)(pξ,p′

ξ)
]
⊗1I Λ+++(p′

ξ,pη)

−Λ−−−(pξ,pη)
[
γ0⊗γ0 V (2)(pξ,p′

ξ)
]
⊗1I Λ−−−(p′

ξ,pη)
]

+ corresponding terms with interacting
quark pairs (23) and (31), (8)

and the Salpeter equation then reads explicitly as follows:

ΦΛ
M (pξ,pη) =

×
[

Λ+++(pξ,pη)
M−Ω(pξ,pη)+iε

+
Λ−−−(pξ,pη)

M+Ω(pξ,pη)−iε

]
γ0⊗γ0⊗γ0

×
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η) Φ

Λ
M (p′

ξ,p
′
η)

+
[

Λ+++(pξ,pη)
M−Ω(pξ,pη)+iε

− Λ−−−(pξ,pη)
M+Ω(pξ,pη)−iε

]
γ0⊗γ0⊗1I

×
∫ d3p′ξ

(2π)3
V (2)(pξ,p′

ξ)⊗ 1I ΦΛ
M (p′

ξ,pη)

+ corresponding terms with interacting
quark pairs (23) and (31). (9)

Here Ω(pξ,pη) := ω1(p1) + ω2(p2) + ω3(p3) denotes the
sum of the kinetic energies ωi(pi) =

√|pi|2 +m2
i of each

quark. This equation determines the baryon masses M
and the corresponding Salpeter amplitudes ΦΛ

M . The full
Bethe-Salpeter amplitude χP̄ in the corresponding order
of approximation is then determined from the Salpeter
amplitude ΦΛ

M as follows (for details see appendix A):

χP̄ =
[
G0P̄ − iG0P̄

(
V

(3)
R +K

(2)

P̄ − V eff
P̄

(1)
)
G0P̄

]
ΓΛ

P̄ ,

(10)
where we introduced the vertex function ΓΛ

M according to

ΓΛ
M (pξ,pη) := −i

∫ d3p′ξ
(2π)3

d3p′η
(2π)3[

V
(3)
Λ (pξ,pη;p′

ξ,p
′
η)+V eff

M

(1)
(pξ,pη;p′

ξ,p
′
η)

]
ΦΛ

M (p′
ξ,p

′
η).

(11)

Here the baryon four-momentum P̄ = M = (M,0) is at
rest; for a general four-momentum P̄ on the mass shell
the vertex function must be boosted by a suitable Lorentz
transformation in the obvious way.

2.2 Current matrix elements

The physically relevant bound-state matrix elements of
the current operator 〈P̄ |jµ(x)|P̄ ′〉 with

jµ(x) := : Ψ(x)q̂γµΨ(x) : ,

where q̂ is the charge operator, are calculated as follows:
First consider the eight-point Green’s function

Gµ(x1, x2, x3, x, x
′
1, x

′
2, x

′
3) =

−〈0|T Ψ(x1)Ψ(x2)Ψ(x3)jµ(x) Ψ(x′
1)Ψ(x

′
2)Ψ(x

′
3) |0〉. (12)

Fixing the specific time ordering

min{x0
1, x

0
2, x

0
3} > x0 > max{x′0

1 , x′0
2 , x′0

3 }
and inserting the physical baryon states |P̄ 〉 and |P̄ ′〉 in-
between, we find that the Fourier transform of this quan-
tity must have poles at P 0 = ωP :=

√|P|2 +M2 and

P ′0 = ω′
P′ :=

√
|P′|2 +M ′2. In the vincinity of these

poles the Fourier transform Gµ
P,P ′ of Gµ has the form

Gµ
P,P ′(pξ, pη, p

′
ξ, p

′
η) =

1
4 ωP ω′

P′

χP̄ (pξ, pη)
(P 0 − ωP + iε)

〈P̄ |jµ(0)|P̄ ′〉 χP̄ ′(p′ξ, p
′
η)

(P ′0 − ω′
P′ + iε)

+ regular terms for P 0 → ωP and P ′0 → ω′
P′ . (13)

On the other hand, the minimal coupling yields

Gµ
P,P ′(pξ, pη, p

′
ξ, p

′
η) =∫ d4p′′ξ

(2π)4
d4p′′η
(2π)4

d4p′′′ξ

(2π)4
d4p′′′η

(2π)4
GP (pξ, pη; p′′ξ , p

′′
η)

× Kµ
P,P ′(p′′ξ , p

′′
η , p

′′′
ξ , p′′′η )

×GP ′(p′′′ξ , p′′′η ; p′ξ, p
′
η). (14)
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Here GP is the Fourier transform of the six-point function

G(x1, x2, x3;x′
1, x

′
2, x

′
3) :=

−〈0| T Ψ(x1)Ψ(x2)Ψ(x3)Ψ(x′
1)Ψ(x

′
2)Ψ(x

′
3)|0〉. (15)

Kµ
P,P ′ denotes the current kernel in momentum space

which due to the presence of a 2-body interaction kernel
is given by the sum

Kµ
P,P ′ = K

µ(0)
P,P ′ +K

µ(1)
P,P ′ (16)

with

K
µ(0)
P,P ′(pξ, pη, p

′
ξ, p

′
η) =

S1
F
−1 (

1
3P+pξ+ 1

2pη

) ⊗ S2
F
−1 (

1
3P−pξ+ 1

2pη

) ⊗ q̂ γµ

× (2π)4δ(4)(pξ − p′ξ) (2π)
4δ(4)

(
2
3
(P − P ′) + pη − p′η

)
+ corresponding photon couplings to quarks 1 and 2

(17)

and

K
µ(1)
P,P ′(pξ, pη, p

′
ξ, p

′
η) = i K(2)

( 2
3 P+pη)

(pξ, p
′
ξ) ⊗ q̂ γµ

× (2π)4 δ(4)

(
2
3
(P − P ′) + pη − p′η

)
+ corresponding terms with photon couplings

to quark 1 and quark 2. (18)

We now note (see ref. [6]) that the six-point Green’s func-
tions GP and GP ′ in the vincinity of the baryon energies
P 0 = ωP and P ′0 = ω′

P′ , respectively, behave as

GP (pξ, pη; p′ξ, p
′
η) =

−i
2ωP

χP̄ (pξ, pη) χP̄ (p′ξ, p
′
η)

P 0 − ωP + iε
+ regular terms for P 0 → ωP (19)

and

G′
P (pξ, pη; p′ξ, p

′
η) =

−i
2ω′

P′

χP̄ ′(pξ, pη) χP̄ ′(p′ξ, p
′
η)

P ′0 − ω′
P′ + iε

+ regular terms for P ′0 → ω′
P′ (20)

Inserting these Laurent expansions of GP and GP ′ into
the previous equation (14) yields

Gµ
P,P ′(pξ, pη, p

′
ξ, p

′
η) = − 1

4 ωP ω′
P′

χP̄ (pξ, pη)
(P 0 − ωP + iε)

×
[ ∫ d4p′′ξ

(2π)4
d4p′′η
(2π)4

d4p′′′ξ

(2π)4
d4p′′′η

(2π)4

χP̄ (p
′′
ξ , p

′′
η)K

µ

P̄ ,P̄ ′(p′′ξ , p
′′
η , p

′′′
ξ , p′′′η ) χP̄ (p

′′′
ξ , p′′′η )

]

× χP̄ (p′ξ, p
′
η)

(P ′0 − ω′
P′ + iε)

+ regular terms for P 0 → ωP and P ′0 → ω′
P′ . (21)

The comparison with eq. (13) shows indeed that the for-
mula

〈P̄ |jµ(0)|P̄ ′〉 = −χP̄ Kµ

P̄ ,P̄ ′ χP̄ ′ =

−
∫

d4pξ

(2π)4
d4pη

(2π)4
d4p′ξ
(2π)4

d4p′η
(2π)4

χP̄ (pξ, pη)K
µ
P̄ ,P̄ ′(pξ, pη, p

′
ξ, p

′
η) χP̄ ′(p′ξ, p

′
η) (22)

must hold. Our equations (10) and (16) for χP̄ and the
current kernel KP̄ ,P̄ ′ can now be inserted into this for-
mula. The result is

〈P̄ |jµ(0)|P̄ ′〉 = −χP̄ Kµ

P̄ ,P̄ ′ χP̄ ′ = −Γ
Λ

P̄ Kµ

P̄ ,P̄ ′ Γ
Λ
P̄ ′ , (23)

where Γ
Λ

P̄ is the adjoint vertex function which in the rest
frame of the baryon is related to ΓΛ

P̄
by

Γ
Λ

M = −ΓΛ
M

†
γ0 ⊗ γ0 ⊗ γ0. (24)

Kµ
P̄ ,P̄ ′ defines the effective current kernel

Kµ
P̄ ,P̄ ′ :=[
G0P̄ − i G0P̄

(
V

(3)
R +K

(2)

P̄ − V eff
P̄

(1)
)
G0P̄

]
× Kµ

P̄ ,P̄ ′

×
[
G0P̄ ′ − i G0P̄ ′

(
V

(3)
R +K

(2)

P̄ ′ − V eff
P̄ ′

(1)
)
G0P̄ ′

]
, (25)

which we expand to the same order in the residual kernel
as the effective kernel V eff

M used in the Salpeter equation,
i.e. up to the first order

Kµ
P̄ ,P̄ ′ = Kµ(0)

P̄ ,P̄ ′ +Kµ(1)

P̄ ,P̄ ′ + higher orders. (26)

Here the 0-th-order contribution is defined as

Kµ(0)

P̄ ,P̄ ′ = G0P̄ K
µ(0)

P̄ ,P̄ ′ G0P̄ ′ (27)

and reads explicitly

Kµ(0)

P̄ ,P̄ ′(pξ, pη, p
′
ξ, p

′
η) =

S1
F

(
1
3 P̄+pξ+ 1

2pη

) ⊗ S2
F

(
1
3 P̄−pξ+ 1

2pη

)
⊗ S3

F

(
1
3 P̄−pη

)
q̂ γµS3

F

(
1
3 P̄

′−p′η
)

× (2π)4δ(4)(pξ − p′ξ) (2π)
4δ(4)

(
2
3
(P̄ − P̄ ′) + pη − p′η

)
+ corresponding photon couplings to quarks 1 and 2.

(28)

The 1st-order contribution reads

Kµ(1)

P̄ ,P̄ ′ = G0P̄ K
µ(1)

P̄ ,P̄ ′ G0P̄ ′

−i G0P̄ K
µ(0)

P̄ ,P̄ ′ G0P̄ ′

(
V

(3)
R +K

(2)

P̄ ′ − V eff
P̄ ′

(1)
)
G0P̄ ′

−i G0P̄

(
V

(3)
R +K

(2)

P̄ −V eff
P̄

(1)
)
G0P̄ K

µ(0)

P̄ ,P̄ ′ G0P̄ ′ . (29)
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Calc.
MMD [14]

Q2[GeV2]

G
p E
(Q

2
)

32.521.510.50

1

0.8

0.6

0.4

0.2

0

Fig. 1. The electric form factor of the proton. Data are taken
from the compilation of P. Mergell et al. (MMD) [14].

Due to the complexity of the first-order contributionKµ(1)

P̄ ,P̄ ′

to the current matrix element we neglected so far this
term in our calculations and took only the 0-th-order term
Kµ(0)

P̄ ,P̄ ′ into account. We should mention at this point that
in the static limit P̄ = P̄ ′ = M ≡ (M,0) the first-
order term does not contribute to the normalization of
the charge as it vanishes for the time component of the
current, i.e.

Γ
Λ

M K0(1)
M,M ΓΛ

M = 0, (30)

while the 0-th-order term alone gives the correct normal-
ization due to the normalization condition of the Salpeter
amplitudes. Neglecting Kµ(1)

P̄ ,P̄ ′ and setting the incoming
baryon into the rest frame, i.e. P̄ ′ = M ≡ (M,0), we
then obtain for momentum transfer q := P̄ − P̄ ′

〈P̄ |jµ(0)|M〉 � −Γ
Λ

P̄ Kµ(0)

P̄ ,M
ΓΛ

M =

−3
∫

d4pξ

(2π)4
d4pη

(2π)4
Γ

Λ

P̄

(
pξ, pη − 2

3
q

)
×S1

F

(
1
3M+pξ+ 1

2pη

) ⊗ S2
F

(
1
3M−pξ+ 1

2pη

)
⊗ S3

F

(
1
3M−pη + q

)
q̂ γµS3

F

(
1
3M−pη

)
ΓΛ

M (pξ,pη).

This is the final expression for the current matrix elements
which we use for the computation of form factors in the
next section.

3 Electroweak form factors of the nucleon

On the basis of the theoretical considerations of the pre-
ceeding section we compute the current matrix elements

〈N, P̄ , λ|jE,A
µ (0)|N, P̄ ′, λ′〉, (31)

Calc.
Schiavilla[19]

Eden[18]
Passchier [17]

Herberg[15], Ostrick[16]
Argonne V18
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Fig. 2. The electric form factor of the neutron.
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Fig. 3. The electric form factor of the proton (solid line)
and neutron (dashed line) calculated without the instanton-
induced residual interaction compared with the experimental
dipole shape GD (dash-dotted line).

for a nucleon state |N, P̄ , λ〉 with momentum P̄ and helic-
ity λ, where jE,A

µ (0) is the electromagnetic or axial current
operator

jE
µ (x) := Ψ(x)q̂γµΨ(x); jA

µ (x) := Ψ(x)τ+γµγ
5Ψ(x). (32)

They determine the electric, magnetic and axial form fac-
tors according to (Q2 = −q2)

GN
E (Q2) :=

jN
0 (Q2)√

4M2 +Q2
, GN

M (Q2) :=
jN
+ (Q2)

2
√

Q2
, (33)
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Fig. 4. The electric isoscalar (solid line) and isovector (dashed
line) form factors for the nucleon compared with the experi-
mental dipole shape GD (dash-dotted line).
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Fig. 5. The magnetic form factor of the proton. Data are taken
from the compilation of P. Mergell et al. (MMD) [14].

where

jN
0 (0) :=

〈
N, P̄ ,

1
2
|jE

0 (0)|N, P̄ ′,
1
2

〉
, (34)

jN
+ (0) :=

〈
N, P̄ ,

1
2
|jE

1 (0)|N, P̄ ′,−1
2

〉

+i

〈
N, P̄ ,

1
2
|jE

2 (0)|N, P̄ ′,−1
2

〉
(35)

for the electromagnetic form factors and

GA(Q2) :=
j+
A (Q2)√

4M2 +Q2
, (36)
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Fig. 6. The magnetic form factor of the neutron compared
with (MMD) [14] and new data from MAMI [20,21].
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Fig. 7. The ratio µpGp
E/Gp

M compared with the new JLab
data [22].

with

j+
A (Q2) :=

〈
p, P̄ ,

1
2
|jA

1 (0)|n, P̄ ′,−1
2

〉

+i

〈
p, P̄ ,

1
2
|jA

2 (0)|n, P̄ ′,−1
2

〉
(37)

for the axial one. The normalization of the form factors
is such that the static magnetic moments and the axial
coupling are given by

µM := GM (Q2 = 0), gA := GA(Q2 = 0). (38)

The result for the proton electric form factor is shown
in fig. 1. The form factor obviously falls off too rapidly.
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Fig. 8. The electric and magnetic form factor of the proton compared to the results of Wagenbrunn et al. (Graz) [4], Keister
and Capstick (KC) [23] and the dipole fit to the data.

The electric form factor of the neutron, shown in fig. 2,
rises sharply; the high-Q2 behaviour of our theoretical pre-
diction is still acceptable. The sharp rise is in qualitative
agreement with more recent data, but our result over-
shoots the experimental values. The rapid fall-off of the
proton form factor and the sharp rise of the neutron form
factor result from the action of the ’t Hooft interaction.
To demonstrate this we show in fig. 3 the result of a calcu-
lation with the confinement force alone (which, of course,
will not yield a satisfactory spectrum).

A closer look at the results shows that it is the be-
haviour of the isovector form factor Gv

E := Gp
E − Gn

E ,
which is responsible for the disagreement with the empiri-
cal data. The isoscalar form factor Gs

E := Gp
E +Gn

E shows
indeed even a perfect dipole behaviour (see fig. 4), con-
sistent with the experimental parametrization GD(Q2) =
(1 +Q2/0.71GeV2)−2. We want to note in addition that
the neutron form factor, which we have computed, still has
a chance to agree with experiment, because the extraction
from deuteron scattering is not free of ambiguities. A re-
cent paper [24], which treats this problem, produces in
fact neutron form factors in qualitative agreement with
our results.

In figs. 5 and 6 we show our results for the magnetic
form factors of proton and neutron. Obviously we de-
scribe the data very well. This is interesting in so far
as we induce by ’t Hooft’s force strong correlations in
the amplitudes, which in standard non-relativistic quark
models spoil the symmetry of the wave function and
destroy therefore the classical SU(6) results for magnetic
moments. We believe that the correct relativistic boosting
of our amplitudes is responsible for the good agreement
with the data. For comparison we have calculated the
magnetic moment of the proton omitting the boost (as in
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Fig. 9. The axial form factor of the nucleon. Data are taken
from the compilation of V. Bernard et al. [31].

non-relativistic calculations). The value drops in fact by
the order of one magneton.

Very recently the ratio µpG
p
E/Gp

M has been measured
with high accuracy at Jefferson Lab [22]. The data show
a monotonical, almost linear decrease with increasing Q2

indicating that the electric form factor of the proton de-
creases significantly faster than the dipole GD, which is
in qualitative agreement with our results (see fig. 7). But
due to the rapid fall-off of Gp

E the ratio is strongly under-
estimated in our model for high Q2.

In fig. 8 we compare our results for the electric and
magnetic form factor of the proton with the predictions
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Table 1. Static properties of the nucleon.

Calc. Exp.

µp 2.74 µN 2.793 µN [30]

µn −1.70 µN −1.913 µN [30]√
〈r2〉pE 0.82 fm 0.847 fm [14]

〈r2〉nE 0.11 fm2 0.113± 0.004 fm2 [14]√
〈r2〉pM 0.91 fm 0.836 fm [14]√
〈r2〉nM 0.86 fm 0.889 fm [14]

gA 1.21 1.2670± 0.0035 [30]√
〈r2〉A 0.62 fm 0.61± 0.01 fm [31]
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Fig. 10. ∆(1232) magnetic transition form factor.

of the Goldstone-boson-exchange model of Wagenbrunn
et al. [4] and the light-front calculation of Keister and
Capstick [23] using the wave functions of the relativized
quark model of Capstick and Isgur [2]. In addition the
phenomenological dipole fit of the experimental data is
shown to facilitate the comparison with experiment. We
have chosen these two alternative models because for both
of them more form factor calculations (hyperons and tran-
sition form factors) are available or could be done in prin-
ciple. (We apologize that for lack of space we do not show
here the work of other authors.) Both alternative models
have the problem that a basically non-covariant calcula-
tion based on the Schrödinger equation has to be rela-
tivized by an additional recipe introduced ad hoc. In our
model such a necessity does not show up, because the for-
malism is dictated by a covariant field theory approach.
It is therefore quite satisfactory, that our approach can
compete quantitatively with the older work.

Figure 9 shows our result for the axial form factor in
comparison with the experimental data, which show in
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Fig. 11. P11(1440) electroexcitation helicity amplitudes.
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Fig. 12. S11(1535) electroexcitation helicity amplitudes.

fact large deviations between several experimental groups.
Our theoretical results agree, however, very well with the
more recent experimental work.

We conclude this section with a table of static elec-
troweak constants of the nucleon (table 1). Apparently we
achieved a reasonably good agreement with the common
experimental values.

4 Transition form factors

The nucleon-∆ transition form factor is intensively studied
since many years. A long-standing problem is the small-
ness of this quantity at low Q2 in quark model calcula-
tions, which can only be cured by hybrid models with
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Fig. 13. D13(1520) electroexcitation helicity amplitudes.
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Fig. 14. S11(1650) electroexcitation helicity amplitudes.

a mesonic cloud around the nucleon [47,48]. Our result,
compared to the experimental data, is shown in fig. 10. We
see that at small Q2 we do not cure this old quark model
prediction and that our form factor remains too small.
The Q2 behaviour above 1 GeV2, however, is correct.

The results for the transition form factors of the second
and third resonance region are presented in the form of the
helicity amplitudes Ap

λ and An
λ for proton and neutron

targets, respectively, defined by

AN
λ := C〈N∗, P̄ , λ|jE

1 (0) + ijE
2 (0)|N, P̄ ′, λ− 1〉 (39)

with C :=
√

πα
2MN∗ (M2

N∗−M2
N

)
following [49]. For the Roper

resonance P11(1440) (see fig. 11) experimental data are
unfortunately contradicting each other, because the ex-
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Fig. 15. D13(1700) electroexcitation helicity amplitudes.
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Fig. 16. D15(1675) electroexcitation helicity amplitudes.

traction from pion photoproduction is strongly model de-
pendent. The experimental situation is much better for the
S11(1535) and D13(1520), though not completely conclu-
sive. In fig. 12 we show the available experimental data for
the S11 together with our result and the result of a quark
model calculation by Capstick [23]. We see that our model
works better at low Q2 but our form factor possibly drops
too fast. The helicity amplitude Ap

1/2 for D13(1520) (see
fig. 13) is well reproduced, but the amplitude Ap

3/2 seems
to be too small even at the photon point. To complete our
results for the 1h̄ω shell we show the helicity amplitudes
for S11(1650), D13(1700) and D15(1675) in figs. 14, 15 and
16 and for the ∆-resonances S31(1620) and D33(1700) in
figs. 17 and 18. Experimental data to compare with, taken
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Table 2. Photon couplings.

State Calc. KI [50] Exp. [30] Calc. KI [50] Exp. [30] State Calc. KI [50] Exp. [30]

S11(1535) Ap
1
2

113 147 90± 30 An
1
2

−75 −119 −46± 27 P33(1232) AN
1
2

−89 −103 −135± 6

S11(1650) Ap
1
2

5 88 53± 16 An
1
2

−16 −35 −15± 21 AN
3
2
−152 −179 −255± 8

D13(1520) Ap
1
2

−53 −23 −24± 9 An
1
2

1 −45 −59± 9 S31(1620) AN
1
2

18 59 27± 11

Ap
3
2

51 128 166± 5 An
3
2

−52 −122 −139± 11 D33(1700) AN
1
2

63 100 104± 15

D13(1700) Ap
1
2

−13 −7 −18± 13 An
1
2

16 −15 0± 50 AN
3
2

68 105 85± 22
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3
2

−10 11 −2± 24 An
3
2

−42 −76 −3± 44

D15(1675) Ap
1
2

4 12 19± 8 An
1
2

−25 −37 −43± 12

Ap
3
2

5 16 15± 9 An
3
2

−33 −53 −58± 13
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1
2

−48 −24 −65± 4 An
1
2

27 16 40± 10
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Fig. 17. S31(1620) electroexcitation helicity amplitude.

from [36], are again quite contradictory but new measure-
ments at Jefferson Laboratory are in progress.

The photon couplings of all these resonances are sum-
marized in table 2, compared with the results of the non-
relativistic model of Koniuk and Isgur [50]. With the ex-
ceptions discussed just before, they agree quite well with
the data. Our results for the second and third resonance
region are therefore quite satisfactory; because of the total
lack of experimental data we stop, however, our investi-
gation of form factors at this point, though we could in
principle continue with higher resonances.

5 Conclusion

On the basis of the Bethe-Salpeter equation we have com-
puted nucleon form factors and photon transition form

AN
3/2

AN
1/2

AN
3/2 Burkert [36]

AN
1/2 Burkert [36]

Q2[GeV2]

A
N λ
[1
0
−

3
G
eV

−
1
/
2
]

32.521.510.50

200

150

100

50

0

Fig. 18. D33(1700) electroexcitation helicity amplitudes.

factors of baryons up to the third resonance region. Our
results are in quantitative agreement with the existent
experimental data, but need further experimental verifi-
cation. Our fully relativistic treatment proved to be ab-
solutely necessary to reach these results; in addition we
were able to demonstrate that our dynamical assumptions
about the effective quark forces at least do not lead to con-
tradictions. In future work higher orders of the effective
kernels V eff

M and Kµ

P̄ ,P̄ ′ neglected so far will be taken into
account. So far we did not find strong indications that
the concept of constituent quarks fails completely at the
energies considered. There is of course room for improve-
ments, e.g. sea quark admixtures or pion cloud effects as
used in some hybrid models. We have made no efforts in
this direction, because our goal is to explore the concept
of constituent quarks at higher energies in order to find
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out when it really fails. In the same spirit we are now per-
forming similar calculations of strange baryon properties
and strong two-body decays of baryon resonances.

We want to thank our colleagues U. Meißner, E. Klempt,
F. Klein, B. Schoch, W. Pfeil, V.V. Anisovich, A. Sarantsev,
H. Schmieden and S. Capstick for many helpful discussions
and useful hints. The financial aid of the Deutsche Forschungs-
gemeinschaft is gratefully acknowledged.

Appendix A. Reconstruction of the
Bethe-Salpeter amplitude

In our first paper [6] we demonstrated how, under assump-
tions (5) and (6), the Bethe-Salpeter equation (2)

χM = −i G0M

(
V (3) +K

(2)

M

)
χM , (A.1)

can be reduced (in the rest frame of the baryon) to a
Salpeter equation for the (projected) Salpeter amplitude

ΦΛ
M (pξ,pη) :=

Λ(pξ,pη)
∫ dp0

ξ

2π
dp0

η

2π
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
. (A.2)

Here

Λ(pξ,pη) : = Λ+++(pξ,pη) + Λ−−−(pξ,pη)

= Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

+ Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3) (A.3)

is a projector on purely positive-energy and negative-
energy Dirac spinors. To perform the reduction we split
the integral kernelKM = V (3)+K

(2)

M of the Bethe-Salpeter
equation into two parts

KM = V
(3)
Λ +

(
V

(3)
R +K

(2)

M

)
. (A.4)

The first part V
(3)
Λ := Λ V (3)Λ of the kernel (with Λ :=

γ0 ⊗γ0 ⊗γ0 Λ γ0 ⊗γ0 ⊗γ0) is the particular contribution
of the instantaneous three-body potential V (3) which cou-
ples to purely positive-energy and negative-energy com-
ponents only. The second, residual part V

(3)
R +K

(2)

M is the

sum of the retarded two body contribution K
(2)

M and the
remaining part V

(3)
R := V (3) − V

(3)
Λ of V (3) that also cou-

ples to the mixed energy components. Putting the difficult
residual contribution into the resolvent

GM = G0M − i G0M

[
V

(3)
R +K

(2)

M

]
GM , (A.5)

the Bethe-Salpeter equation can be written in the form

χM = −i GM V
(3)
Λ ΦΛ

M . (A.6)

This form, firstly, gives a prescription of how to recon-
struct the full Bethe-Salpeter amplitude χM from the

Salpeter amplitude ΦΛ
M and, secondly, is suitable for the

reduction to the Salpeter equation as V
(3)
Λ is instanta-

neous. We obtained

ΦΛ
M = −i 〈G0M 〉

[
V

(3)
Λ + V eff

M

]
ΦΛ

M , (A.7)

where the brackets 〈 〉 denote the six-dimensional reduc-
tion

〈A〉(pξ,pη; p′
ξ,p

′
η) :=∫ dp0

ξ

2π
dp0

η

2π

∫ dp′0ξ
2π

dp′0η
2π

A(pξ, pη; p′ξ, p
′
η) (A.8)

of any eight-dimensional six-point function A and V eff
M

(with the property Λ V eff
M = V eff

M Λ = V eff
M ) is an addi-

tional instantaneous three-body kernel which effectively
parameterizes the effects of the retarded two-body forces.
The latter is defined as the irreducible kernel for the re-
solvent 〈GM 〉Λ := Λ〈GM 〉Λ, where the irreducible is un-
derstood with respect to 〈G0M 〉, i.e.

〈GM 〉Λ != 〈G0M 〉 − i 〈G0M 〉 V eff
M 〈GM 〉Λ. (A.9)

To determine this quasi-potential we expanded it in pow-
ers k of the residual kernel V (3)

R +K
(2)

M , i.e.

V eff
M =

∞∑
k=1

V eff
M

(k)
. (A.10)

In ref. [6] we derived a generic formula to calculate the
terms V eff

M

(k) of the series to arbitrary orders. In practice,
however, we have to approximate the effective kernel V eff

M ,
which consists of an infinite number of terms. A system-
atical approximation is now given by truncating the series
(A.10) at some finite order k < ∞, i.e.

V eff
M � V eff

M

(1)
+ V eff

M

(2)
+ . . .+ V eff

M

(k)
, (A.11)

thus yielding an approximation of the Salpeter amplitude
ΦΛ

M � ΦΛ
M

(k) by the solution of

ΦΛ
M

(k)
= −i〈G0M 〉

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
. (A.12)

For the calculation of transition matrix elements we need
the full Bethe-Salpeter amplitude which (if V eff

M and ΦΛ
M

are known exactly) can be reconstructed by the prescrip-
tion (A.6) via the Green’s function GM . However, the trun-
cation of the Salpeter equation has the consequence that
the relation (A.6) does not hold for ΦΛ

M
(k). To be consistent

we need an approximation of this reconstruction formula
that corresponds to the approximation (A.11) of the ef-
fective kernel. In other words, we require the correspond-
ing k-th-order approximation χ

(k)
M of the Bethe-Salpeter

amplitude χM to be such that its reduction according to
eq. (A.2) yields the k-th-order approximation ΦΛ

M
(k) of the
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Salpeter amplitude. Here we want to show that a consis-
tent prescription for an approximated reconstruction of
the Bethe-Salpeter amplitude can indeed be found. To
this end, we recast the Bethe-Salpeter and Salpeter equa-
tion into a more convenient form. We start with the exact
Bethe-Salpeter equation (A.1) and isolate the instanta-
neous part V

(3)
Λ +

∑k
i=1 V eff

M

(i) of the kernel which en-
ters in the k-th-order approximation of the Salpeter equa-
tion (A.12):

χM = −i G0M

[ (
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)

+

(
K

(2)

M + V
(3)
R −

k∑
i=1

V eff
M

(i)

)]
χM . (A.13)

The exact Bethe-Salpeter equation can then be rewritten
as follows:

χM = −i GR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
χM (A.14)

= −i GR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M , (A.15)

giving a reconstruction formula for χM from ΦΛ
M , which is

equivalent to eq. (A.6) but better suited to formulate our
approximation for the full amplitude. Here a new residual
propagator GR,k

M appears which describes the propagation
of the three quarks via the second part of the kernel in
(A.13) and which is defined by the integral equation

GR,k
M = G0M − i G0M

(
K

(2)

M + V
(3)
R −

k∑
i=1

V eff
M

(i)

)
GR,k

M .

(A.16)
Performing the reduction of eq. (A.15) —i.e. the inte-
gration over the p0

ξ , p
0
η-coordinates and the multiplication

with the projector Λ— we obtain the (still exact) Salpeter
equation in the form

ΦΛ
M = −i 〈GR,k

M 〉Λ
[
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

]
ΦΛ

M , (A.17)

where the reduced (and projected) Green’s function de-
fined by 〈GR,k

M 〉Λ := Λ〈GR,k
M 〉Λ obeys

〈GR,k
M 〉Λ=〈G0M 〉−i 〈G0M 〉

∞∑
i=k+1

V eff
M

(i)〈GR,k
M 〉Λ . (A.18)

The crucial point is now that the kernel appearing in this
integral equation is obviously at least of (k+1)-th order of
the residual kernel V (3)

R +K
(2)

M . In particular the Neumann
series of 〈GR,k

M 〉Λ consists, apart from the 0-th-order term
〈G0M 〉, only of terms of order > k. In other words, if we
expand the propagator GR,k

M , similar to the effective kernel

V eff
M , in powers of the residual kernel V (3)

R +K
(2)

M , i.e.

GR,k
M =

∞∑
i=0

GR,k
M

(i)
(A.19)

and consider only terms up to the k-th order, we find〈
k∑

i=0

GR,k
M

(i)

〉
Λ

:= Λ

〈
k∑

i=0

GR,k
M

(i)

〉
Λ = 〈G0M 〉. (A.20)

This result now allows to state an appropriate approxima-
tion of the full Bethe-Salpeter equation which is consistent
with the Salpeter equation (A.12): replacing in the exact
Bethe-Salpeter equation (A.14) the propagator GR,k

M by its
expansion (A.19) up to the order k

GR,k
M −→

k∑
i=0

GR,k
M

(i)
, (A.21)

we obtain an approximation of the Salpeter amplitude
χM � χ

(k)
M by the solution of the approximated Bethe-

Salpeter equation

χ
(k)
M = −i

k∑
i=0

GR,k
M

(i)

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
χ

(k)
M . (A.22)

Then, the corresponding reduced amplitude

ΦΛ
M

(k)
(pξ,pη) :=

Λ(pξ,pη)
∫ dp0

ξ

2π
dp0

η

2π
χ

(k)
M

(
(p0

ξ ,pξ), (p0
η,pη)

)
, (A.23)

is indeed the solution of the approximated Salpeter equa-
tion (A.12) and χ

(k)
M can be reconstructed from ΦΛ

M
(k) ac-

cording to

χ
(k)
M = −i

k∑
i=0

GR,k
M

(i)

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
.

(A.24)
Our explicit model calculations so far have been performed
in lowest order, i.e. with V eff

M � V eff
M

(1) and ΦΛ
M � ΦΛ

M
(1)

as given by eqs. (8) and (9). In this case we find from
eq. (A.16)

GR,1
M � GR,1

M

(0)
+ GR,1

M

(1)
=

G0M − i G0M

(
K

(2)

M + V
(3)
R − V eff

M

(1)
)

G0M (A.25)

such that the Bethe-Salpeter amplitude χM � χ
(1)
M in the

corresponding order of approximation is determined by

χ
(1)
M =

[
G0M − i G0M

(
K

(2)

M + V
(3)
R − V eff

M

(1)
)

G0M

]
× (−i)

[
V

(3)
Λ + V eff

M

(1)
]

ΦΛ
M

(1)
. (A.26)
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